单细胞测序技术是近年最大的生命科学突破之一,相关文章频繁发表于各大顶级期刊,然而单细胞数据的分析依然是大家普遍面临的障碍。本专题将针对10X Genomics单细胞转录组数据演示各种主流分析,包括基于Seurat的基础分析、以及基于clusterProfiler、Monocle、SingleR等R包的延伸分析。不足之处请大家批评指正,欢迎添加Kinesin微信交流探讨!
单细胞数据分析中,一般需要对可以细分的细胞再聚类,比如本次分析中的T细胞群体可以细分为Navie T cells、CD8+ T cells、Treg cells、Tmemory cells等。细胞子集的提取使用subset函数,主要依据meta.data的分类项目选择,也可以自定义细胞barcode提取。
提取细胞子集
提重新降维聚类
因为再聚类的细胞之间差异比较小,所以聚类函数FindClusters()控制分辨率的参数建议调高到resolution = 0.9。
Cluster差异分析
SingleR细胞鉴定
Subcluster的细胞同样可以使用SingleR鉴定细胞类型。使用的时候注意调整参考数据库和分类标签,以便鉴定结果更有针对性。上节使用SingleR时使用的参考数据库是人类主要细胞图谱(HumanPrimaryCellAtlasData),采用分类标签是主分类标签(label.main);这次建议使用人类免疫细胞数据(MonacoImmuneData),分类标签采用精细分类标签(label.fine)。希望详细了解SingleR的朋友可以到github看看:
https://github.com/dviraran/singler
获取帮助
本教程的目的在于把常用的单细胞分析流程串起来,适合有一定R语言基础的朋友参考。分析原理和代码我没有详细解释,官网有详细的教程和权威的解释,翻译好的中文教程也有多个版本,有兴趣的可以搜索一下。如果您学习本教程有一定困难,可以点击 “阅读原文” 找到作者联系方式,获取帮助。
往期回顾
并不是所有的批次效应都可以被矫正