首先来看此次争议中的另一个主角——“AlphaFold”是什么?又做了什么?
1972年,诺贝尔化学奖得主Christian Anfinsen提出,理论上,蛋白质的氨基酸序列应该能够完全决定它的3D结构。这一假说让科学家们开始了基于氨基酸序列,通过计算方法预测蛋白质3D结构的探索。
然而,这样的探索面临着极其重大的挑战,20世纪80、90年代用计算机预测蛋白质结构的早期尝试并不成功。AlphaFold的出现改变了这一局面。2021年,DeepMind宣布已经用AlphaFold预测了人体内近乎所有蛋白质的结构,以及20个其他被大量研究的生物体的完整“蛋白质组”,其中包括小鼠和大肠杆菌,累计共有36.5万个结构。
而今年,DeepMind更是计划发布总计1亿多个结构预测——相当于所有已知蛋白的近一半,是蛋白质数据银行(PDB,Protein Data Bank)结构数据库中经过实验解析的蛋白数量的几百倍之多。颜宁的成就攻克了困扰生物学界50年的一个难题,AlphaFold的成就同样解决了困扰生物学界50年的重大挑战。
所以就有人说:你看颜宁跟她的团队研究那么久才搞出来一个结构,AlphaFold一下子就能预测出上亿个,等于是把整个游戏都颠覆了,然后像颜宁他们这样的人当然是下岗没地儿去了。
这里面有几点需要思考:
第一,现在小学生都知道的无理数和虚数在历史上花费了人们上千年的思考才出现,我们不能说之前那些数学家搞得就是小学生都懂的玩意儿。
第二,AI的能力来自于前人积累的数据。AlphaFold之所以能够做到这件事儿,恰恰是因为前面有科学家做了无数的理论和实验的工作,它才有一个非常好的基础。
AI是站在很多个巨人的肩膀上才能达到这样的高度的,如果没有这些科学家之前的结果,AI和机器学习是不可能自己学会做生物学研究的。
第三,科学家并不是只做这一件事,AI能做了他们就要被取代了。
我不是颜宁本人,也不去揣测她对于机器学习的看法。但如果是我的话,我会很开心。因为这个研究如此复杂,如果AI能解决的话,那恰恰是可以把这些科学家从大量重复且繁重的实验中解放出来,让他们去研究更多更有意思的课题。其实就相当于我们发明了自行车、汽车,然后它们可以帮助人类行走,这并不是意味着人类就不需要走路了,而是说人把这个时间节省下来,给人类提供了更大的自由,可以让人去做更有意义的事情。
第四,颜宁并不是在国外混不下去才要回国。颜宁这样的顶级的科学家,发了这么多《Nature》、《Science》、《CELL》,仅靠闷头做做重复性的实验是不可能的。没有发过论文的人凭空臆想以为只是努力熬夜做重复工作就可以发顶刊的论文了。
井蛙不可语海,夏虫不可语冰。