推广 热搜:   中国  未来  系统  政策  行业  设备  基金  快速  教师 

基于TF-IDF的特征提取技术:基于内容的电影推荐(物品画像、用户画像、为用户产生TOP-N推荐结果)

   日期:2024-11-03     作者:caijiyuan    caijiyuan   评论:0    移动:http://mip.tpjde.com/news/248.html
核心提示:人工智能AI:Keras PyTorch MXNet TensorFlow PaddlePaddle 深度学习实战(不定时更新)物品画像构建步骤

人工智能AI:Keras PyTorch MXNet TensorFlow PaddlePaddle 深度学习实战(不定时更新

基于TF-IDF的特征提取技术:基于内容的电影推荐(物品画像、用户画像、为用户产生TOP-N推荐结果)

物品画像构建步骤

  • 利用tags.csv中每部电影的标签作为电影的候选关键词
  • 利用TF·IDF计算每部电影的标签的tfidf值,选取TOP-N个关键词作为电影画像标签
  • 将电影的分类词直接作为每部电影的画像标签

前面提到,物品画像的特征标签主要都是指的如电影的导演、演员、图书的作者、出版社等结构话的数据,也就是他们的特征提取,尤其是体征向量的计算是比较简单的,如直接给作品的分类定义0或者1的状态。

但另外一些特征,比如电影的内容简介、电影的影评、图书的摘要等文本数据,这些被称为非结构化数据,首先他们本应该也属于物品的一个特征标签,但是这样的特征标签进行量化时,也就是计算它的特征向量时是很难去定义的。

因此这时就需要借助一些自然语言处理、信息检索等技术,将如用户的文本评论或其他文本内容信息的非结构化数据进行量化处理,从而实现更加完善的物品画像/用户画像。

TF-IDF算法便是其中一种在自然语言处理领域中应用比较广泛的一种算法。可用来提取目标文档中,并得到关键词用于计算对于目标文档的权重,并将这些权重组合到一起得到特征向量。

算法原理

TF-IDF自然语言处理领域中计算文档中词或短语的权值的方法,是词频(Term Frequency,TF)和逆转文档频率(Inverse document Frequency,IDF)的乘积。TF指的是某一个给定的词语在该文件中出现的次数。这个数字通常会被正规化,以防止它偏向长的文件(同一个词语在长文件里可能会比短文件有更高的词频,而不管该词语重要与否)。IDF是一个词语普遍重要性的度量,某一特定词语的IDF,可以由总文件数目除以包含该词语之文件的数目,再将得到的商取对数得到。

TF-IDF算法基于一个这样的假设:若一个词语在目标文档中出现的频率高而在其他文档中出现的频率低,那么这个词语就可以用来区分出目标文档。这个假设需要掌握的有两点

  • 在本文档出现的频率高
  • 在其他文档出现的频率低。

因此,TF-IDF算法的计算可以分为词频(Term Frequency,TF)和逆转文档频率(Inverse document Frequency,IDF)两部分,由TF和IDF的乘积来设置文档词语的权重。

结论:TF-IDF与词语在文档中的出现次数成正比,与该词在整个文档集中的出现次数成反比。

用途:在目标文档中,提取关键词(特征标签)的方法就是将该文档所有词语的TF-IDF计算出来并进行对比,取其中TF-IDF值最大的k个数组成目标文档的特征向量用以表示文档。

注意:文档中存在的停用词(Stop Words,如“是”、“的”之类的,对于文档的中心思想表达没有意义的词,在分词时需要先过滤掉再计算其他词语的TF-IDF值。

算法举例

对于计算影评的TF-IDF,以电影“加勒比海盗:黑珍珠号的诅咒”为例,假设它总共有1000篇影评,其中一篇影评的总词语数为200,其中出现最频繁的词语为“海盗”、“船长”、“自由”,分别是20、15、10次,并且这3个词在所有影评中被提及的次数分别为1000、500、100,就这3个词语作为关键词的顺序计算如下。

  1. 将影评中出现的停用词过滤掉,计算其他词语的词频。以出现最多的三个词为例进行计算如下

    • “海盗”出现的词频为20/200=0.1
    • “船长”出现的词频为15/200=0.075
    • “自由”出现的词频为10/200=0.05
  2. 计算词语的逆文档频率如下

    • “海盗”的IDF为:log(1000/1000)=0
    • “船长”的IDF为:log(1000/500)=0.3 “自由”的IDF为:log(1000/100)=1
  3. 由1和2计算的结果求出词语的TF-IDF结果,“海盗”为0,“船长”为0.0225,“自由”为0.05。

通过对比可得,该篇影评的关键词排序应为:“自由”、“船长”、“海盗”。把这些词语的TF-IDF值作为它们的权重按照对应的顺序依次排列,就得到这篇影评的特征向量,我们就用这个向量来代表这篇影评,向量中每一个维度的分量大小对应这个属性的重要性。

将总的影评集中所有的影评向量与特定的系数相乘求和,得到这部电影的综合影评向量,与电影的基本属性结合构建视频的物品画像,同理构建用户画像,可采用多种方法计算物品画像和用户画像之间的相似度,为用户做出推荐。

加载数据集

  • map函数

    • 描述

      map() 会根据提供的函数对指定序列做映射。

      第一个参数 function 以参数序列中的每一个元素调用 function 函数,返回包含每次 function 函数返回值的新列表。

    • 语法

      map() 函数语法

       
    • 参数

      • function -- 函数
      • iterable -- 一个或多个序列
    • 返回值

      Python 2.x 返回列表。

      Python 3.x 返回迭代器。

    • 示例

       

基于TF·IDF提取TOP-N关键词,构建电影画像

  • gensim介绍

    • python 三方库 自然语言处理利器
    • 支持包括TF-IDF,word2vec在内的多种主题模型算法
    • 安装 pip install gensim
  • gensim基本概念

    • 语料(Corpus:一组原始文本的集合,在Gensim中,Corpus通常是一个可迭代的对象(比如列表)。每一次迭代返回一个可用于表达文本对象的(稀疏)向量。
    • 向量(Vector:由一组文本特征构成的列表。是一段文本在Gensim中的内部表达。
    • 模型(Model
  • 词袋模型(BOW bag of words)

    文本特征提取有两个非常重要的模型

    • 词集模型:单词构成的集合,集合自然每个元素都只有一个,也即词集中的每个单词都只有一个。
    • 词袋模型:在词集的基础上如果一个单词在文档中出现不止一次,统计其出现的次数(频数)。

    两者本质上的区别,词袋是在词集的基础上增加了频率的维度,词集只关注有和没有,词袋还要关注有几个。

完善画像关键词

为了根据指定关键词迅速匹配到对应的电影,因此需要对物品画像的标签词,建立倒排索引

倒排索引介绍

通常数据存储数据,都是以物品的ID作为索引,去提取物品的其他信息数据

而倒排索引就是用物品的其他数据作为索引,去提取它们对应的物品的ID列表

用户画像构建步骤

  • 根据用户的评分历史,结合物品画像,将有观影记录的电影的画像标签作为初始标签反打到用户身上
  • 通过对用户观影标签的次数进行统计,计算用户的每个初始标签的权重值,排序后选取TOP-N作为用户最终的画像标签

用户画像建立

  • reduce函数

    • 描述

      reduce() 函数会对参数序列中元素进行累积。

      函数将一个数据集合(链表,元组等)中的所有数据进行下列操作:用传给 reduce 中的函数 function(有两个参数)先对集合中的第 1、2 个元素进行操作,得到的结果再与第三个数据用 function 函数运算,最后得到一个结果。

    • 语法

      reduce() 函数语法

       
    • 参数

      • function -- 函数,有两个参数
      • iterable -- 可迭代对象
      • initializer -- 可选,初始参数
    • 返回值

      返回函数计算结果。

    • 示例

       
  • 使用collections.Counter类统计列表元素出现次数

     
本文地址:http://www.tpjde.com/news/248.html    推平第 http://www.tpjde.com/ , 查看更多
 
 
更多>同类行业资讯
0相关评论

新闻列表
企业新闻
推荐企业新闻
推荐图文
推荐行业资讯
点击排行
网站首页  |  关于我们  |  联系方式  |  使用协议  |  版权隐私  |  网站地图  |  排名推广  |  广告服务  |  积分换礼  |  网站留言  |  RSS订阅  |  违规举报  |  鄂ICP备2023001713号