推广 热搜:   中国  未来  系统  行业  政策  基金  设备  快速  教师 

谭明奎

   日期:2024-12-11     作者:caijiyuan    caijiyuan   评论:0    移动:http://mip.tpjde.com/news/3215.html
核心提示:谭老师研究组目前尚有学博指标2个(申请考核制,已毕业硕士也可以),研究方向包括大模型、具身指能(智能机器人)等。谭老师研

谭老师研究组目前尚有学博指标2个(申请考核制,已毕业硕士也可以),研究方向包括大模型、具身指能(智能机器人)等。谭老师研究方向可以参考他本人主页或者google scholar,请有意向同学与谭老师联系,邮箱mingkuitan@scut.edu.cn 

谭明奎

2002.09-2006.06 湖南大学    环境科学与工程学院        环境工程(学士)

2006.09-2009.06 湖南大学    电气与信息工程学院  控制科学与工程(硕士)

2010.01-2014.10 新加坡南洋理工大学  计算机学院      计算机科学(博士)

(1)机器学习(全英课程)

使用教材: Understanding Machine Learning: From Theory to Algorithms by Shai Shalev-Shwartz and Shai Ben-David学时:48课时(32 教学 + 16 实验)

(2)深度学习(全英课程) 

使用教材:Deep Learning Tutorial, LISA LAB, University of Montreal  学时:32课时(24教学 + 4实验 + 4专题报告)

(3)人工智能前沿与软件工程

学时:16课时(16教学)

2009.07-2009.12         新加坡南洋理工大学              研究助理

2013.09-2014.05         新加坡南洋理工大学              副研究员

2014.06-2016.06         澳大利亚阿德莱德大学          高级副研究员

2016.09-至今           华南理工大学软件学院              教授

  担任国际会议审稿人:

CVPR, NeurIPS, ICML, ICLR, ICCV, ECCV, AAAI, IJCAI, ICLR, ACMMM, MICCAI, ACML, AISTATS  

1、超高维数据分析:特征选择、大规模矩阵恢复、大规模优化

2、深度学习及应用:网络模型压缩、网络结构自动优化、可解释性和泛化性能分析

3、复杂结构数据分析:Low-level图像处理、医疗图像分析、视频内容理解、3D数据分析

(1)论文“Towards Ultrahigh Dimensional Feature Selection for Big Data” 荣获ICCM (世界华人数学家联盟) 2019最佳论文奖      

(2)论文“Guided M-Net for High-resolution Biomedical Image Segmentation with Weak Boundaries”荣获2019年MICCAI Workshop on Ophthalmic Medical Image Analysis最佳论文奖 

(3)华南理工大学建校65周年校长基金“最具科研潜质”奖

(4)2019年“TVP腾讯云最具价值专家”奖

近年来主要论文如下:

期刊论文

[1] Runhao Zeng, Chuang Gan, Peihao Chen, Wenbing Huang, Qingyao Wu, and Mingkui Tan*. Breaking Winner-takes-all: Iterative-winners-out Networks for Weakly Supervised Temporal Action Localization. TIP, 2019.

[2] Yong Guo, Qi Chen, Jian Chen, Qingyao Wu, Qinfeng Shi, and Mingkui Tan*. Auto-Embedding Generative Adversarial Networks for High Resolution Image Synthesis. TMM, 2019.

[3] Fan Lyu, Qi Wu, Fuyuan Hu, Qingyao Wu, and Mingkui Tan*. Attend and Imagine: Multi-label Image Classification with Visual Attention and Recurrent Neural Networks. TMM, 2019.

[4] Mingkui Tan, Zhibin Hu, Yuguang Yan, Jiezhang Cao, Dong Gong, and Qingyao Wu. Learning Sparse PCA with Stabilized ADMM Method on Stiefel Manifold. TKDE, 2019.

[5] Peilin Zhao, Yifan Zhang, Min Wu, Steven CH Hoi, Mingkui Tan*, and Junzhou Huang. Adaptive Cost-sensitive online Classification. TKDE, 2018.

[6] Dong Gong, Mingkui Tan†, Qinfeng Shi, Anton van den Hengel, and Yanning Zhang. Mptv: Matching Pursuit-based Total Variation Minimization for Image Deconvolution. TIP, 2018.

[7] Qingyao Wu, Mingkui Tan†, Xutao Li, Huaqing Min, and Ning Sun. Nmfe-sscc: Non-negative Matrix Factorization Ensemble for Semi-supervised Collective Classification. KBS, 2015.

[8] Mingkui Tan, Ivor W Tsang, and Li Wang. Towards Ultrahigh Dimensional Feature Selection for Big Data. JMLR, 2014.

[9] Mingkui Tan, Ivor W Tsang, and Li Wang. Matching Pursuit LASSO Part I: Sparse Recovery over Big Dictionary. TSP, 2014.

[10] Mingkui Tan, Ivor W Tsang, and Li Wang. Matching Pursuit Lasso Part ii: Applications and Sparse Recovery over Batch Signals. TSP, 2014.

[11] Mingkui Tan, Ivor W Tsang, and Li Wang. Minimax Sparse Logistic Regression for Very High-dimensional Feature Selection. TNNLS, 2013. 

会议论文

[1] Deng Huang, Peihao Chen, Runhao Zeng, Qing Du, Mingkui Tan*, and Chuang Gan. Location-aware Graph Convolutional Networks for Video Question Answering. In AAAI, 2020.

[2] Jiezhang Cao, Langyuan Mo, Yifan Zhang, Kui Jia, Chunhua Shen, and Mingkui Tan*. Multi-marginal wasserstein gan. In NeurIPS, 2019.

[3] Yong Guo, Yin Zheng, Mingkui Tan*, Qi Chen, Jian Chen, Peilin Zhao, and Junzhou Huang. NAT: Neural Architecture Transformer for Accurate and Compact Architectures. In NeurIPS, 2019.

[4] Runhao Zeng, Wenbing Huang, Mingkui Tan*, Yu Rong, Peilin Zhao, Junzhou Huang, and Chuang Gan. Graph Convolutional Networks for Temporal Action Localization. In ICCV, 2019.

[5] Pengshuai Yin, Qingyao Wu, Yanwu Xu, Huaqing Min, Ming Yang, Yubing Zhang, and Mingkui Tan*. PM-Net: Pyramid Multi-label Network for Joint Optic Disc and Cup Segmentation. In MICCAI, 2019.

[6] Yifan Zhang, Hanbo Chen, Ying Wei, Peilin Zhao, Jiezhang Cao, Xinjuan Fan, Xiaoying Lou, Hailing Liu, Jinlong Hou, Xiao Han, Jianhua Yao, Qingyao Wu, Mingkui Tan*, and Junzhou Huang. From Whole Slide Imaging to Microscopy: Deep Microscopy Adaptation Network for Histopathology Cancer Image Classification. In MICCAI, 2019.

[7] Shihao Zhang, Huazhu Fu, Yuguang Yan, Yubing Zhang, Qingyao Wu, Ming Yang, Mingkui Tan*, and Yanwu Xu. Attention Guided Network for Retinal Image Segmentation. In MCCAI, 2019.

[8] Shihao Zhang, Yuguang Yan, Pengshuai Yin, Zhen Qiu, Wei Zhao, Guiping Cao, Wan Chen, Jin Yuan, Risa Higashita, Qingyao Wu, Mingkui Tan*, and Jiang Liu. Guided M-Net for High-Resolution Biomedical Image Segmentation with Weak Boundaries. In Workshop on OMIA, 2019.

[9] Jingwen Wang, Yuguang Yan, Yanwu Xu, Wei Zhao, Huaqing Min, Mingkui Tan*, and Jiang Liu. Conditional Adversarial Transfer for Glaucoma Diagnosis. In EMBC, 2019.

[10] Yuguang Yan, Mingkui Tan†, Yanwu Xu, Jiezhang Cao, Michael Ng, Huaqing Min, and Qingyao Wu. Oversampling for Imbalanced Data via Optimal Transport. In AAAI, 2019.

[11] Yuguang Yan, Wen Li, Hanrui Wu, Huaqing Min, Mingkui Tan*, and Qingyao Wu. Semi-Supervised Optimal Transport for Heterogeneous Domain Adaptation. In IJCAI, 2018.

[12] Jiezhang Cao, Yong Guo, Qingyao Wu, Chunhua Shen, Junzhou Huang, and Mingkui Tan*. Adversarial Learning with Local Coordinate Coding. In ICML, 2018.

[13] Chaorui Deng, Qi Wu, Qingyao Wu, Fuyuan Hu, Fan Lyu, and Mingkui Tan*. Visual Grounding via Accumulated Attention. In CVPR, 2018.

[14] Zhuangwei Zhuang, Mingkui Tan†, Bohan Zhuang, Jing Liu, Yong Guo, Qingyao Wu, Junzhou Huang, and Jinhui Zhu. Discrimination-aware Channel Pruning for Deep Neural Networks. In NeurIPS, 2018.

[15] Yifan Zhang, Peilin Zhao, Jiezhang Cao, Wenye Ma, Junzhou Huang, Qingyao Wu, and Mingkui Tan*. online Adaptive Asymmetric Active Learning for Budgeted Imbalanced Data. In KDD, 2018.

[16] Yong Guo, Qingyao Wu, Chaorui Deng, Jian Chen, and Mingkui Tan*. Double Forward Propagation for Memorized Batch Normalization. In AAAI, 2018.

[17] Chao Han, Qingyao Wu, Michael K Ng, Jiezhang Cao, Mingkui Tan*, and Jian Chen. Tensor based Relations Ranking for Multi-relational Collective Classification. In ICDM, 2017.

[18] Jiezhang Cao, Qingyao Wu, Yuguang Yan, Li Wang, and Mingkui Tan*. On the Flatness of Loss Surface for Twolayered ReLU Networks. In ACML, 2017.

[19] Dong Gong, Mingkui Tan†, Yanning Zhang, Anton van den Hengel, and Qinfeng Shi. Mpgl: An Efficient Matching Pursuit Method for Generalized Lasso. In AAAI, 2017.

[20] Yuguang Yan, Qingyao Wu, Mingkui Tan*, and Huaqing Min. online Heterogeneous Transfer Learning by Weighted Offline and online Classifiers. In ECCV, 2016.

[21] Mingkui Tan, Shijie Xiao, Junbin Gao, Dong Xu, Anton Van Den Hengel, and Qinfeng Shi. Proximal Riemannian Pursuit for Large-scale Trace-norm Minimization. In CVPR, 2016.

[22] Wei Emma Zhang, Mingkui Tan*, Quan Z Sheng, Lina Yao, and Qingfeng Shi. Efficient Orthogonal Non-negative Matrix Factorization over Stiefel Manifold. In CIKM, 2016.

[23] Mingkui Tan, Yan Yan, Li Wang, Anton Van Den Hengel, Ivor W Tsang, and Qinfeng Javen Shi. Learning Sparse Confidence-weighted Classifier on Very High Dimensional Data. In AAAI, 2016.

[24] Yan Yan, Mingkui Tan*, Ivor Tsang, Yi Yang, Chengqi Zhang, and Qng Shi. Scalable Maximum Margin Matrix Factorization by Active Riemannian Subspace Search. In IJCAI, 2015.

[25] Mingkui Tan, Qinfeng Shi, Anton van den Hengel, Chunhua Shen, Junbin Gao, Fuyuan Hu, and Zhen Zhang. Learning Graph Structure for Multi-label Image Classification via Clique Generation. In CVPR, 2015.

[26] Mingkui Tan, Ivor W Tsang, Li Wang, Bart Vandereycken, and Sinno Jialin Pan. Riemannian Pursuit for Big Matrix Recovery. In ICML, 2014.

[27] Mingkui Tan, Ivor W Tsang, Li Wang, and Xinming Zhang. Convex Matching Pursuit for Large-scale Sparse Coding and Subset Selection. In AAAI, 2012.

[28] Mingkui Tan, Li Wang, and Ivor W Tsang. Learning Sparse SVM for Feature Selection on Very High Dimensional Datasets. In ICML, 2010.


本文地址:http://www.tpjde.com/news/3215.html    推平第 http://www.tpjde.com/ , 查看更多
 
 
更多>同类行业资讯
0相关评论

新闻列表
企业新闻
推荐企业新闻
推荐图文
推荐行业资讯
点击排行
网站首页  |  关于我们  |  联系方式  |  使用协议  |  版权隐私  |  网站地图  |  排名推广  |  广告服务  |  积分换礼  |  网站留言  |  RSS订阅  |  违规举报  |  鄂ICP备2023001713号